
IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016 1111

SeCoMan: A Semantic-Aware Policy Framework
for Developing Privacy-Preserving and

Context-Aware Smart Applications
Alberto Huertas Celdrán, Félix J. García Clemente, Manuel Gil Pérez, and Gregorio Martínez Pérez, Member, IEEE

Abstract—This paper is intended to provide a solution for de-
veloping context-aware smart applications preserving the users’
privacy in the Internet of Things (IoT). In this sense, we present
a framework called Semantic Web-based Context Management
(SeCoMan) aimed at offering a set of predefined queries to pro-
vide applications with information about indoor location of users
and objects, as well as context-aware services. SeCoMan uses a
semantic-oriented IoT vision where semantic technologies play
a key role. In fact, SeCoMan uses Semantic Web for modeling
description of things, reasoning over data to infer new knowl-
edge, and defining context-aware policies. SeCoMan also defines
a layered architecture, including functions related to the manage-
ment of the users’ privacy in a manner that accommodate IoT
requirements, in addition to not affecting system performance nor
introducing excessive overheads. A thorough discussion on other
related works, together with some experiments to measure the
throughput and scalability, confirm that SeCoMan is a solution
that improves the most relevant proposals existing so far.

Index Terms—Context awareness, Internet of Things (IoT),
pervasive computing, privacy preserving, semantic reasoner.

I. INTRODUCTION

THE INTERNET of Things (IoT) enables the design and
creation of smart objects, exploring new ways of user

interaction in smart spaces as well as the development of smart
services [1]. Smart spaces are characterized by being areas
for cooperation of objects and systems, and for ubiquitous
interaction with people. The deployment of smart applications
is a complex process due to the lack of frameworks providing
support for essential tasks, such as acquiring the information
generated by the IoT from various sources, performing context

Manuscript received September 10, 2013; revised December 19, 2013;
accepted December 29, 2013. Date of publication January 21, 2014; date
of current version August 23, 2016. This work was supported in part by
the Spanish Ministry of Science and Innovation (MICINN) through Project
RECLAMO: Virtual and Collaborative Honeynets based on Trust Manage-
ment and Autonomous Systems applied to Intrusion Management under Grant
TIN2011-28287-C02-02 and through Project Mejora de Arquitectura de Servi-
dores, Servicios y Aplicaciones under Grant TIN2012-38341-C04-03, by the
European Commission through the European Regional Development Fund, and
by the Séneca Foundation through the Funding Program for Research Groups
of Excellence under Grant 04552/GERM/06.

A. Huertas Celdrán, M. Gil Pérez, and G. Martínez Pérez are with the Depart-
ment of Information and Communication Engineering, University of Murcia,
30100 Murcia, Spain (e-mail: alberto.huertas@um.es; mgilperez@um.es;
gregorio@um.es).

F. J. García Clemente is with the Department of Computer Engineer-
ing and Technology, University of Murcia, 30100, Murcia, Spain (e-mail:
fgarcia@um.es).

Digital Object Identifier 10.1109/JSYST.2013.2297707

interpretation and inferring new knowledge based on such
context, managing rules to dynamically create new knowl-
edge, defining basic location queries that provide context-aware
information, allowing users to manage how the framework
should use their locations regarding their privacy needs, sharing
the knowledge among heterogeneous systems, and providing
specific tools to develop smart applications. Many frameworks
for developing smart applications use a semantic-oriented IoT
vision, where semantic technologies play a key role. In fact,
there are solutions based on Semantic Web in a manner that ac-
commodate IoT requirements, but none of them fully supports
all the previous tasks.

In order to conduct such tasks, we present in this paper
a solution called Semantic Web-based Context Management
(SeCoMan). Our main contribution behind SeCoMan is to pro-
vide support for developing context-aware smart applications
preserving the users’ privacy in a semantic-oriented IoT vision.
Smart applications will be able to gather the information gener-
ated by the IoT using a set of queries predefined in SeCoMan,
which are categorized into six groups: operational queries,
providing context-aware information; location queries, yield-
ing the indoor location of the elements (objects and people);
range queries, supplying the elements contained in a given
place; closeness queries, supplying the elements close to the
requester; navigation queries, giving the path to arrive to a
place or element; and authorization queries, providing specific
information about the users’ permission to stay in a place. The
space and context information is shaped in a structured way
by using a collection of ontologies [2]. Furthermore, the use of
semantic reasoners allows us to infer new knowledge that can
be easily shared with other independent systems.

In an IoT context, privacy is a critical issue often overlooked
by schemes proposed to date. This fact has been recently
identified in [3]. Perera et al. argue that privacy is a significant
challenging issue in the IoT, and it is largely unattended at
the context-aware middleware level in the existing solutions.
To address this, SeCoMan supports semantic rules to define
policies. These policies will allow users to share their location
to the right users, at the right granularity, at the right place, and
at the right time. Using location policies, users will be able to
manage their privacy independently of the applications:

1) hiding their locations to other persons;
2) masking their locations with fictitious positions;
3) establishing the granularity at which they want to be

located;
4) defining the level of closeness accepted to be located.

1937-9234 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: alberto.huertas@um.es
mailto: mgilperez@um.es
mailto: gregorio@um.es
mailto: fgarcia@um.es

1112 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

SeCoMan also manages authorization policies to control who
can access (or stay in) a given space. The IoT information is
provided by certain location systems and middleware, which
are independent to the framework. This independence allows
SeCoMan to choose the location systems and middleware de-
pending on the characteristics of the environment.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work regarding other context-
aware solutions. Section III presents the SeCoMan architecture,
whereas the collection of ontologies managed by SeCoMan is
described in Section III-B. Taxonomies of policies and queries
are presented in Sections IV and V, respectively. Section VI
shows the deployment of a smart application making use of
SeCoMan that offers advanced services in a supermarket sce-
nario. Section VII reports some experimental results to illus-
trate the performance of the SeCoMan framework. A thorough
discussion comparing our approach with other related systems
is performed in Section VIII, and finally, conclusions and future
works are drawn in Section IX.

II. RELATED WORK

The large number of objects involved in the IoT makes
organization, representation, storage, and sharing is a poten-
tially challenging task. In such a context, “semantic-oriented”
IoT visions are available in the literature to provide modeling
solutions for things description, reasoning over data generated
by the IoT, semantic execution environments, and architectures
that accommodate IoT requirements [3], [4]. A common on-
tology is a key factor to develop context-aware systems and
smart applications, as it allows knowledge sharing between
independent systems and uses semantic reasoning about the
context to offer advanced services to customers.

A recent publication conducted a depth survey on context-
aware systems oriented to the IoT, where a large number
of solutions are analyzed by considering different topics [3].
Considering the semantic-oriented IoT vision, systems like
Feel@Home [5], Hydra [6], CroCo [7], SOCAM [8], and
CoBrA [9] provide support to “security and privacy” features,
as our solution. Feel@Home is a context-aware framework
that supports communications between contexts or domains,
considering intra- and interdomain interactions. Hydra is an
ambient intelligence middleware system oriented to the IoT,
which integrates the device, semantic, and application contexts
to offer context-aware information. On the other hand, CroCo
is a cross-application context management service for hetero-
geneous environments, whereas SOCAM uses a collection of
ontologies that shapes the quality, dependence, and classifica-
tion of the context information. This collection is built on a
common upper ontology for all contexts, as well as for domain-
specific ontologies that define concepts of each one. Another
related work in this context, which is not included in the survey
presented in [3], is CoCA [10]. This proposal presents a collab-
orative context-aware service platform, where a neighborhood-
based mechanism to share resources is introduced. CoCA infers
users’ location by considering information about the context
and the location of the elements.

Four of the five solutions described make use of semantic
rules for different purposes, being Feel@Home the only one
that does not. Hydra, CroCo, and SOCAM do use semantic
rules to infer new information about a given context, taking
into account information from others. Instead, CoCA makes
use of semantic rules to manage the ontologies, e.g., a prop-
erty is the inverse of another property, as well as additional
information about the domain. Yet, none of these four solutions
uses semantic rules to define policies oriented to protect users’
privacy preferences. Users’ privacy should be supported by any
context-aware framework, with which the users are capable
of dynamically restricting or disclosing information to others
depending on their location and their preferences in terms
of privacy. Consequently, the current trend in context-aware
systems focuses on controlling the disclosure of users’ location
by using policies.

There are a number of systems based on Semantic Web
that manage policies to preserve users’ privacy. For example,
CoBrA presents a context-aware architecture that allows dis-
tributed agents to share information with each other. CoBrA
defines an ontology that shapes spaces composed of smart
agents, devices, and sensors, and protects the privacy of its
users by using rules that deduce whether they have the right
permissions to share and/or receive information. Another ex-
ample is PPCS [11], where a semantically rich policy-based
framework with different levels of privacy to protect users’
information in environments with mobile devices is presented.
Dynamic information observed or inferred from the context,
along with static information about the owner, is taken into
account to make access control decisions. Location and context
information of the users are shared (or not) depending on their
privacy policies. Another proposal supporting privacy policies
without using Semantic Web technologies is CoPS [12]. In
CoPS, users can control who can access their context data,
when, and at what level of granularity. It organizes policies into
different hierarchical levels, defining a default policy according
to an optimistic or pessimistic approach.

Despite the work and progress made by the systems dis-
cussed, a lot of work is still required to improve key aspects,
such as policies and context management, users’ privacy, avail-
ability and quality of services, and robustness. In Section VIII,
we thoroughly discuss and compare our framework with others
that also manage users’ privacy through policies.

III. SECOMAN ARCHITECTURE

SeCoMan is a trusted third party that manages users’ privacy
about their location. It supplies the context and space informa-
tion provided by the IoT to smart applications that could be not
reliable enough for managing this information. The SeCoMan
architecture is composed of three layers to allow framework
actors to manage the resources and develop applications more
efficiently. Fig. 1 shows the components and actors forming the
multilayered architecture of SeCoMan.

A. Actors

We defined three kinds of actors to interact with SeCo-
Man. First, the Framework Administrator manages the common

HUERTAS CELDRÁN et al.: SeCoMan: A SEMANTIC-AWARE POLICY FRAMEWORK FOR DEVELOPING SMART APPLICATIONS 1113

Fig. 1. Overview of the multilayered architecture of SeCoMan.

resources for all contexts, among which we emphasize the
management of the Location ontology that models the space
information and the definition of the Authorization policies.
Furthermore, this administrator registers the smart applications
that can make use of SeCoMan and indicates to the Plug-in
manager module the location systems and middleware that has
to be used to receive the space and context information.

On the other hand, each Application Administrator is in
charge of managing the context of his/her own applications,
handling the Context-aware ontologies and Policies as well
as more sophisticated queries by combining the Operational,
Authorization, and Location ones. Finally, the last kind of actor
is Users. They are persons who use the smart applications to
obtain information about the environment in which they are
located. They define their location policies to manage their
privacy directly in the framework without having to rely upon
the applications. For that reason, our framework acts as a trusted
third party for the users as applications might not be reliable
enough with the location information that they manage.

B. Layers of the SeCoMan Architecture

The three layers composing the SeCoMan architecture
shorten the complexity of the IoT infrastructures and provide
the necessary resources for the previous actors; therefore, they
can manage smart applications, the space and context informa-
tion, and the plug-ins for the location systems and middleware.
First, the Application layer contains smart applications that
provide users with specific information about the spaces in
which they are located. To that end, the Applications will make
queries to the Context Management layer in order to obtain the
space and context information desired by the users.

In order to manage the context, the Context Management
layer uses ontologies to shape the information gathered from
the Plug-in layer, the semantic rules to define the policies that
control the system behavior, and the semantic reasoning to infer
new knowledge, taking into account the previous information
sources. To perform all these tasks, the Operational, Authoriza-
tion, and Location modules provide smart applications with a
number of queries predefined in the framework, which offer
certain information regarding these topics. Queries are applied
on the new knowledge inferred by the Reasoner module. This

takes as input the ontological model, formed by the union of
the ontologies updated according to the information collected
by the Plug-in Manager module, and the semantic rules defined
by the actors through their corresponding administration com-
ponents.

Finally, the Plug-in layer obtains the space and context in-
formation about the elements that form part of the environment
and their locations, as well as further information from these
elements depending on the environment. This is composed of
different plug-ins that interact, on one hand, with the Middle-
ware (which in turn communicate with sensors or other devices
to receive context information) and, on the other hand, with the
Location Systems to obtain information about the space. This
layer provides independence to SeCoMan with regard to the
location system used, thus allowing Application Administrators
to choose the best location system or middleware depending on
the characteristics of the environment.

We describe here the main ontology managed by SeCoMan
and an example about a supermarket scenario, which will be
used through this paper to introduce all concepts related to
our proposal. Using this scenario, we implemented a smart
application offering location-based services to customers.

C. Location Ontology

SeCoMan defines a collection of ontologies to shape the
space and context information. This collection is composed of
an ontology called Location that models the indoor location,
common for all contexts, and a set of ontologies for the smart
applications that provide specific services in different contexts.
Fig. 2(a) shows the Location ontology. This ontology models
the space and provides a set of primitives with which to describe
regions of the space and relationships among them.

The Location ontology is categorized into three different
but related topics: element, authorization, and space. The top-
level class in the element topic is Element, which refers to any
entity that forms part of the environment (persons or objects).
Elements can have several Roles and Privileges that can be
used to provide personalized information. Note that Privilege is
the most important class in the authorization topic. Privileges
are used to allow Elements to perform certain actions, such
as staying in a specific position. The Element class has two
predefined subclasses, System and Person, which are defined to
be disjointed. A Person defines the accuracy on the granularity
and closeness at which he/she wants to release his/her location
by using the Accuracy, Granularity, and Closeness classes.
Finally, and in order to support location generalization, the
Location ontology uses a hierarchical model for location. Space
is the top-level class in this model, having five predefined
subclasses, namely (from low to high accuracy): Building,
Floor, Area, Section, and Position. Position establishes the
Geographical or Absolute Position of an element, where several
Positions form a Section that has two predefined subclasses, i.e.,
Corridor and Room.

The Location ontology entities are related each other by
properties. A portion of these properties is used to establish
new relationships through policies. For example, authorization
policies use the hasAuthzAccess property to link Persons and

1114 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

Fig. 2. Ontologies of SeCoMan. (a) Location ontology, common for all contexts. (b) Supermarket ontology shaping a specific context.

Spaces according to the persons’ privileges; location policies
generate the hasCloaking and hasHiding properties between
two persons to mask and hide their location, respectively;
and hasRequesterGranularity and hasRequesterCloseness are
established by the location policies to link Persons to each other
with a specific Granularity and Closeness.

D. Motivating Example

As a proof of concept to show the ease of adding new
ontologies to SeCoMan, we implemented a smart application
called eCoMarket (further details in Section VI). It offers a
smart service to customers of a supermarket according to their
location. eCoMarket defines an ontology called Supermarket,
shown in Fig. 2(b), that shapes the supermarket context.

The top-level class in the Supermarket ontology is Product,
representing an article of the supermarket. This class inherits
from Element of the Location ontology, so that this relation is
the connection between both ontologies. As it can be observed,
a new ontology only has to inherit from the Element class of
the Location ontology, or from one of its subclasses, in order
to create a link between the two ontologies. In the supermarket
context, Products can have Discounts, and some of them can
belong to a ShoppingCart through a ShoppingList that contains
one or more ProductItems.

For clarity, Fig. 3 shows a graphic representation of a basic
example about a given instance of a supermarket, in order to
clearly follow all elements introduced here. It is worth noting
that we defined the corresponding data properties for all classes
in the two ontologies shown in Fig. 2. For example, the name
and the price of any article of the supermarket were modeled
as data properties in the Product class. Although they were
not drawn in Fig. 2 for simplicity, the complete definition of
both ontologies—classes and object and data properties—can
be accessed and downloaded from [13].

In this example, we created entities of the classes defined
in the Location and Supermarket ontologies. In this sense, we
have a supermarket with one Floor, two Areas, two Corridors,
and five Positions. At the supermarket place, there are four
persons who can use different Roles, Privileges, Granularities,
Closeness, and Accuracies. Specifically, Peter has the GoldCus-
tomer and Hidden roles (R), and he is located at Position1.

Fig. 3. Map of the supermarket example.

This position belongs to the ComputersCorridor, which is
in turn located at ElectronicsArea. Peter has a ShoppingCart
containing a Laptop. On the other hand, Natalie is located
at Position5 and she has the OpenCashRegister privilege (P).
Position5 belongs to the PaymentCorridor that is located at
PaymentArea. Andy has the AnonymChild role, and he is located
at Position4 belonging to PaymentCorridor. Finally, Margaret is
located at Position2, which belongs to the ComputersCorridor,
and she has granularity (G) of Area and closeness (C) of
Floor. Furthermore, the supermarket has two products: a Laptop
whose price is 1000C and is located at Position1; and a Tablet
whose price is 400C and is located at Position3, belonging to
two different corridors and areas.

IV. SECOMAN POLICIES

Our framework dynamically controls users’ privacy, their
authorization to stay in certain spaces, and the context infor-
mation, and generates new knowledge by using semantic rules,
which form policies. SeCoMan uses rules that consist of two
lists of predicates: the antecedent and the consequent parts of
a rule. If all predicates of the antecedent part take the Boolean
value true, all predicates in the consequent part are evaluated. It
is important to know that, in our semantic rules, the predicates
in the consequent part establish new relationships between
entities of the ontologies and does not generate new entities.

The policies in SeCoMan are composed of the following
elements: Type is the kind of policy; Maker is the person who

HUERTAS CELDRÁN et al.: SeCoMan: A SEMANTIC-AWARE POLICY FRAMEWORK FOR DEVELOPING SMART APPLICATIONS 1115

defines the policy (possibly being the same as the Target);
Target is the person whose information is managed by the
policy; Requester is the person, or group of persons, who
request information about the Target; Place is the region of
the environment in which the policy is applied; and Result
determines the relationship that the Requester will have about
the Target information. Note that Result is the consequent part
of the semantic rule, whereas the remaining fields belong to
the antecedent part. SeCoMan also illustrates the possibility
of including extensions to make richer and more powerful
policies. For example, Makers may improve their policies by
tuning elements like Role, Privilege, Date, or Context.

In the context of SeCoMan, our framework architecture
manages three kinds of policies: Operational policies, defined
by the Application Administrators to generate new knowledge
related to the users’ context; Authorization policies, defined by
the Framework Administrator to decide the authorization of the
users to stay or not in a specific space; and Location policies,
defined by application-independent Users to specify the privacy
preferences about their location. We show below an example for
each of these policies, making use of the supermarket scenario
defined in Section III-D.

A. Operational Policies

Operational policies are used to manage the information of
the smart applications, generating new knowledge related to the
context-aware ontologies. The antecedent part of the policy is
composed of entities belonging to the collection of ontologies
of SeCoMan, whereas the consequent one establishes relation-
ships between two entities of which, at least, one of them
has to belong to the Location ontology. In the supermarket
example, let us suppose that the Application Administrator
of the eCoMarket application (Maker) defines that “On July
2013, Persons who have the GoldCustomer role will obtain a
21% off in products located at ComputersCorridor,” i.e.,

Person(?target)

∧ isLocated(?target,#ComputersCorridor)

∧ hasRole(?target,#GoldCustomer)

∧ Product(?product)

∧ isLocated(?product,#ComputersCorridor)

∧ greaterThan (#Today, date(2013, 06, 30))

∧ lessThan (#Today, date(2013, 08, 01))

→ hasDiscount21(?target, ?product).

Applying this rule to the supermarket use case, Peter
(Target) gets a 21% off (Result) on July 2013 in the Laptop
he has in his ShoppingCart and in the Tablet located at Position3
as Peter has the GoldCustomer role and both products belongs
to ComputersCorridor (see Section III-D).

B. Authorization Policies

Authorization policies are based on privileges to allow users
to stay in certain locations according to their privileges [14].

By default, SeCoMan denies the authorization in the absence of
rules. These policies are independent of the context; therefore,
the consequent part in this kind of rule only generates rela-
tionships between entities belonging to the Location ontology
(common for all contexts). In the supermarket example, let us
suppose that the Framework Administrator (Maker) defines
that “Persons located at PaymentArea with the OpenCashReg-
ister privilege have authorized access to be there,” i.e.,

Person(?target) ∧ isLocated(?target,#PaymentArea)

∧ hasPrivilege(?target,#OpenCashRegister)

→ hasAuthzAccess(?target, ?position).

Applying this rule to the supermarket use case, Natalie
(Requester and Target) has authorized access (Result)
to stay at PaymentArea, as she has the OpenCashRegister
privilege.

C. Location Policies

Location policies generate new knowledge related to users’
location privacy, these being independent of the context. Loca-
tion policies are divided into four groups: Cloaking, Hiding,
Granularity, and Closeness. In this kind of policy, the
Target is the same person as the Maker; therefore, he/she can
define rules for the same requester specifying different roles,
locations, dates, or times. We explain below in detail these four
kinds of location policies managed by the framework.

1) Cloaking: Masking or cloaking is intended to generate
one or more fictitious positions for a particular user; therefore,
other users cannot distinguish the real position where the target
is located. As an example, a cloaking policy applied to the
supermarket scenario could be as follows:

Person(#Andy) ∧ hasRole(#Andy,#AnonymChild)

∧ isLocated(#Andy,#PaymentArea)

∧ greaterThan (#Now, time(08, 59))

∧ lessThan (#Now, time(14, 00)) ∧ Person(#Peter)

→ hasCloaking(#Andy,#Peter).

Applying this rule to the supermarket use case, if Peter
(Requester) asks about the position of Andy (Target) be-
tween 9:00 A.M. and 2:00 P.M., SeCoMan will generate one or
more masking positions (Result) for Andy. This is due to Andy
being at PaymentArea and he has the AnonymChild role. This
provokes that Peter cannot distinguish if Andy is at Position4
(his real position) or at a fictitious one, such as Position3, for
example.

2) Hiding: Users can define hiding policies when they do
not want to release their location to others, thereby avoiding
that requesters know the position of the target. A hiding policy
example is shown in the following for the supermarket scenario:

Person(#Peter) ∧ hasRole(#Peter,#Hidden)

∧ isLocated(#Peter,#ComputersCorridor)

∧ Person(?requester)

→ hasHiding(#Peter, ?requester).

1116 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

Applying this rule to the supermarket use case, if someone
(Requester) asks about Peter’s location (Target), SeCoMan
will not return his location (Result), as Peter is at Computer-
sCorridor and he has the Hidden role. This position is hidden,
as requested by Peter, through the hasHiding property.

3) Granularity: Granularity policies are used to indicate the
maximum accuracy at which users want to be located. As stated
in Section III-B, there are various levels of granularity that can
be applied to a given location, namely: Position, Section,
Area, Floor, and Building. An example of policy of this type
in the supermarket scenario could be as follows:

Person(#Margaret) ∧ Person(?requester)

∧Granularity(?granularity)

∧ hasGranularityTarget(#Margaret, ?granularity)

∧ hasAccuracyGranularity(?granularity,#Area)

→ hasRequesterGranularity(?granularity, ?requester).

Applying this rule to the supermarket use case, nobody
(Requester) is able to know that Margaret (Target) is
at Position2, because she has Granularity of Area. There-
fore, other users can only know that Margaret is located at
ElectronicsArea (Result) as she does not want to be lo-
cated with a Granularity below Area (established through
hasRequesterGranularity).

4) Closeness: Closeness policies are defined to indicate the
minimum level of nearness at which persons want to be located.
Nearness levels correspond to the same values defined for the
granularity policies. An example of this kind of policy, applied
to the supermarket scenario, is given by

Person(#Margaret) ∧ Person(?requester)

∧ Closeness(?closeness)

∧ hasClosenessTarget(#Margaret, ?closeness)

∧ hasAccuracyCloseness(?closeness,#Floor)

→ hasRequesterCloseness(?closeness, ?requester).

Applying this rule to the supermarket use case, if someone
(Requester) wants to know who is in adjacent positions,
corridors, areas, or floors, he/she will not know that Margaret
(Target) is located at his/her Floor, as she established Floor as
her maximum level of closeness to be located (Result) through
the hasRequesterCloseness property.

V. SECOMAN QUERIES

This section presents a set of queries allowing smart appli-
cations to provide the space and context information to their
customers. Customers will be able to obtain such information,
but they cannot define their own queries in order to avoid that
they gain private information from others. Queries consider the
information shaped in the SeCoMan ontologies described in
Section III-B and the policies defined in Section IV.

To define the space queries in SeCoMan, we used the four
categories of the taxonomy defined in [15], namely: position or

location, range, nearest neighbor or closeness, and navigation.
In addition, SeCoMan also provides specific information of the
environment and authorization decisions about users to stay in
a place through operational and authorization queries, respec-
tively. We describe in detail in the following the six queries
predefined in our framework, ending with a way of defining
queries composed by the Application Administrators in order
to provide advanced features to their smart application(s).

A. Operational Queries

Operational queries allow Users to get information related
to them and the environment in which they are located, taking
into account the operational policies defined in Section IV-A.
Continuing with the supermarket example of Section III-D,
we show in the following a function that provides information
about the products contained in the requester’s shopping cart.

1. productInfoList shoppingCartProducts(Person
requester) {

2. cart ← SupermarketOnt.hasShoppingCart(requester)
3. productList ← SupermarketOnt.hasShoppingList(cart)
4. for (Product product : productList) {
5. name ← SupermarketOnt.hasId(product)
6. amount ← SupermarketOnt.hasAmount(product)
7. price ← SupermarketOnt.hasPrice(product)
8. discount ← SupermarketOnt.hasDiscount(requester,

product)
9. price ← price ∗ discount
10. productInfoList.add(name, amount, price)
11. }
12. return productInfoList
13. }

We implemented some methods in an external class, called
SupermarketOnt, in order to gather information shaped in the
Supermarket ontology. The shoppingCartProducts function re-
ceives the requester’s shopping cart and the information about
its products (lines 2–7). The operational policies are then taken
into account to apply discounts (line 8) for each of the products
deposited in the shopping cart.

Applying this query to the supermarket use case, if Peter
(Requester) wants to know the information about the products
contained in his cart, he will get that it holds a Laptop whose
price is 790C (Result). Although the price of the Laptop is
1000C (see Section III-D), Peter has a 21% off when applying
the operational policy defined in Section IV-A.

B. Authorization Queries

Queries related to authorization allow Users and the Frame-
work Administrator to know if the customers have authorization
or not to stay in a given space. SeCoMan offers the autho-
rizationAccess and unauthorizedPersons functions to obtain
authorization information.

HUERTAS CELDRÁN et al.: SeCoMan: A SEMANTIC-AWARE POLICY FRAMEWORK FOR DEVELOPING SMART APPLICATIONS 1117

The authorizationAccess function, defined in the follow-
ing, provides Users with information about the authorization
to stay in their position. It receives as parameter the Per-
son who requests the information about himself/herself and
returns an authorization response (allowed or denied). Note
that this and subsequent functions will make use of some
methods implemented in an external class called LocationOnt,
which provides information shaped in the Location ontology.
The authorizationAccess function obtains the requester’s space
(line 2) and will return allowed or denied depending on whether
the requester has access to stay in his/her current space (see
Section IV-B).

1. authorizationResponse authorizationAccess(Person
requester) {

2. space ← LocationOnt.hasPosition(requester)
3. authorization ← LocationOnt.hasAuthzAccess

(requester, space)
4. if (authorization == true)
5. return allowed
6. return denied
7. }

Considering the supermarket use case, if Natalie (Requester)
asks about her authorization to stay where she is, at Pay-
mentArea, the response will be allowed. This is due to the
authorization policy, defined in Section IV-B, allowing Natalie
to stay there as she has the OpenCashRegister privilege.

As opposed to the previous query, the unauthorizedPersons
function, defined below, provides the list of persons without
authorization to stay in a given space. The goal behind this
function is to avoid that persons from hiding their position when
they are in unauthorized spaces, not having into account the
policies that defined them. The unauthorizedPersons function
receives as parameter the Space in which the requester is
interested and returns the list of unauthorized persons staying
there.

1. unauthorizedPersonList unauthorizedPersons(Space
space) {

2. personList ← getElements(space, “Person”)
3. unauthorizedPersonList ← emptyList
4. for (Person target : personList)
5. if (!LocationOnt.hasAuthzAccess(target, space))
6. unauthorizedPersonList.add(target)
7. return unauthorizedPersonList
8. }

Considering the supermarket use case, if the Application
Administrator (Requester) asks about the list of unauthorized
persons located at PaymentCorridor, he/she will obtain that
Andy does not have authorization because he does not have the
OpenCashRegister privilege. Natalie does not appear in that list
because she does have such a privilege.

C. Location Queries

In SeCoMan, location queries can be used by Users to get
the elements’ position that form part of the environment, taking
into account the policies defined in Section IV-C.

As an example, we defined the elementLocation function
(given in the following), which returns a list of spaces in
accordance with the two parameters received: the Person who
requests the information, and the Element about which the re-
quester is interested to obtain its position. It first checks the type
of element of the target (line 2). If the target is a Person (line
3), the function checks whether he/she has a hiding, cloaking, or
granularity policy with the requester. Hiding policies will return
an empty list (lines 4 and 5), whereas the maximum accuracy
at which the target wants to be located will be established by
invoking the getPositionsApplyingGranularity function (lines 7
and 8). Instead, if there is a cloaking policy, the getPositions
ApplyingCloaking function will return the real position of the
target, as well as some fictitious positions to mask the former
one (lines 10 and 11). In case the target is an object, no policy
is applied (lines 14–16).

1. spaceList elementLocation(Person requester, Element
target) {

2. switch (LocationOnt.elementType(target)) {
3. case “Person”:
4. if (LocationOnt.hasHiding(target, requester))
5. spaceList ← emptyList
6. else {
7. if (LocationOnt.hasGranularityTarget(target,

requester))
8. spaceList ← getPositionsApplying

Granularity(target, requester)
9. else spaceList ← LocationOnt.hasPosition(target)
10. if (LocationOnt.hasCloaking(target, requester))
11. spaceList ← getPositionsApplying

Cloaking(spaceList, target)
12. }
13. break
14. case “Object”:
15. spaceList ← LocationOnt.hasPosition(target)
16. break
17. }
18. return spaceList
19. }

Applying this query to the supermarket use case, if Peter
(Requester) wants to know where Andy (Target) is, Peter will
obtain that Andy has two locations, Position4 and Position3.
This result is due to Andy having a cloaking policy, as defined
in Section IV-C1, that returns Position3 as fake position.

D. Range Queries

Range queries can be used to identify all elements placed at
a location meeting a certain criteria. As the previous one, these
also consider hiding, cloaking, and granularity policies.

1118 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

As an example, we defined the rangeSpaceElements function
(given in the following), which provides the elements placed
at a given space. This function returns a list of elements in
accordance with the three parameters received: the Person who
requests the information, the Space in which the requester is
interested, and the ElementType that the requester wants to
obtain. This function checks if the type of element is a Person
(line 3), and if so, the function considers his/her policies;
otherwise, the elements contained in the space are returned
without applying any policy (lines 10–12).

1. rangeElementList rangeSpaceElements(Person
requester, Space space, ElementType elementType) {

2. switch (elementType) {
3. case “Person”:
4. rangeElementList ← emptyList
5. elementList ← getElements(space, elementType)
6. for (Person target : elementList)
7. if (!LocationOnt.hasHiding(target, requester) &&

!LocationOnt.hasCloaking(target, requester) &&
(getGranularity(target, requester) <= space))

8. rangeElementList.add(target)
9. break
10. case “Object”:
11. rangeElementList ← getElements(space,

elementType)
12. break
13. }
14. return rangeElementList
15. }

Considering this query in the supermarket use case, if Andy
(Requester) wants to know the Persons (elementType) located
at ComputersCorridor (Space), he will obtain that nobody is
located there. This result is due to Peter defining a hiding policy
(see Section IV-C2) and Margaret having a granularity policy
with a Granularity more than Area (see Section IV-C3).

E. Closeness Queries

Closeness queries can be used to find the nearby elements
to Persons with a given level of proximity. The hasAdjacent,
hasPosition, and isPositionOf properties, defined in the Loca-
tion ontology [see Fig. 2(a)], aim to provide neighborhood and
hierarchical relationships. This kind of query takes into account
the policies defined by the target.

As an example, we defined the closeElements function (given
in the following), which returns a list of nearby elements to
the requester in accordance with the three parameters received:
the Person who performs the query, the Accuracy indicating the
proximity level at which the requester wants to get the elements,
and the ElementType that the requester wants to obtain. This
function invokes the getAdjacentSpaces function to retrieve
the adjacent spaces to the requester’s location (line 3). Then,

if the type of the desired element is a Person (line 5), the
function obtains the persons located at the spaces previously
obtained (line 6) and applies their policies. Otherwise, if it is an
object (line 11), the elements close to the requester are obtained
without considering any policy (lines 11–13).

1. closeElementList closeElements(Person requester,
Accuracy accuracy, ElementType elementType) {

2. closeElementList ← emptyList
3. spaceList ← getAdjacentSpaces(requester, accuracy)
4. switch (elementType) {
5. case “Person”:
6. elementList ← getElements(spaceList, elementType)
7. for (Person target : elementList)
8. if (!LocationOnt.hasHiding(target, requester) &&

!LocationOnt.hasCloaking(target, requester) &&
(getCloseness(target, requester) <= accuracy))

9. closeElementList.add(target)
10. break
11. case “Object”:
12. closeElementList ← getElements(spaceList,

elementType)
13. break
14. }
15. return closeElementList
16. }

Considering this query in the supermarket use case, if Natalie
(Requester) wants to know who is close to her with proximity
of Corridor, she will obtain that Andy, located at Payment-
Corridor, and Peter, located at ComputersCorridor, are close to
her. Instead, Margaret does not appear in that list because she
defined a closeness policy with a Closeness level of Floor, as
defined in Section IV-C.4.

F. Navigation Queries

Navigation queries allow Users to find the path leading to the
desired place or element. If the destination is a Person, his/her
privacy policies are taken into account to get the path. This kind
of query also considers the same policies as the ones required
by the location queries (defined in Section V-C).

As an example, we defined the getMinimumPaths function
(given in the following), which provides the list of spaces to
reach the target from the requester’s location in accordance
with the two parameters received: the Person who wants to go
from his/her current position to the destination position, and the
Element indicating the destination of the path. This function
obtains the spaces of the source and the destination invoking
the elementLocation function (lines 2 and 3), as defined in
the location queries of Section V-C. Once having the spaces,
the function invokes the pathFinder function for each desti-
nation (line 6). pathFinder is a recursive function that checks
if the source and the destination are in the same space. If so,

HUERTAS CELDRÁN et al.: SeCoMan: A SEMANTIC-AWARE POLICY FRAMEWORK FOR DEVELOPING SMART APPLICATIONS 1119

pathFinder will return the response; otherwise, it recursively
calls itself using each adjacent space to the source as the next
unvisited source, keeping track of paths to avoid cycles. Finally,
the path is returned to the user (line 7), if any.

1. pathList getMinimumPaths(Person requester, Element
destination) {

2. sourcePositionList ← elementLocation(requester,
requester)

3. destinationPositionList ← elementLocation(requester,
destination)

4. pathList ← emptList
5. for (Position destinationPosition : destinationPosition

List)
6. pathList.add(pathFinder(sourcePositionList[0],

destinationPosition))
7. return pathList
8. }

Applying this query to the supermarket use case, if Peter
(Requester) wants to know the path to go from his current
position (Position1) to the Andy’s position (Position4),
getMinimumPaths will return to him a list of spaces with two
alternatives as Andy has a cloaking policy (where Position3 is
a fake position generated in Section IV-C1): 〈Position1,
Position2, Position3, Position4〉 and 〈Position1,
Position2, Position3〉. Another example is the case when
Andy wants to know the path to go from his current position
(Position4) to the Margaret’s position (Position2). The response
will be 〈PaymentArea,ElectronicsArea〉, as she holds a
Granularity of Area (defined in Section IV-C3).

G. Composed Queries

Application Administrators can define more sophisticated
queries by combining some of those described earlier and by
subsequently filtering their output. Therefore, the output of a
query is the input for the next one.

As an example, we defined the complexPathsToOffers func-
tion (given in the following), which provides routes to products
on offer nearby the requester’s current location, without going
through the position where a given person is located. This
function returns a list of minimum paths in accordance with
the three parameters received: the Person who requests the
information, the Space where the requester wants to get the
products with certain discounts, and another Person to whom
the requester wants to avoid in the path. complexPathsToOffers
invokes the elementLocation function to obtain the user’s loca-
tion(s) to be avoided (line 3), and then obtains the products with
discounts placed at the desired space by taking into account the
operational policies defined in Section IV-A (line 4). For each
product, the getMinimumPathAvoidingPosition function is in-
voked (line 6) to obtain the minimum path from the requester’s

location to the product without going through the position(s)
where the unwanted user is located.

1. pathList complexPathsToOffers(Requester requester,
Space space, Person avoidPerson) {

2. pathList ← emptyList
3. avoidPositionList ← elementLocation(requester,

avoidPerson)
4. productsOnOffer ← getProductsOnOffer(requester,

space)
5. for (Product product : productsOnOffer)
6. pathList.add(getMinimumPathAvoidingPosition

(requester, avoidPositionList, product))
7. return pathList
8. }

Applying this query to the supermarket use case, consider
that Peter (Requester) wants to know the minimum path(s) to
products with some discount and located at the same Floor
(Space), without having to go through the Andy’s position. The
function responses that there is a Laptop at the Peter’s position
(Position1), and there is no possible way of going to the Tablet
article without passing through the Andy’s position. This is due
to the cloaking policy of Andy defined in Section IV-C1.

VI. DEPLOYMENT OF A CONTEXT-AWARE

SMART APPLICATION

We developed a smart application, called eCoMarket, that
offers advanced services in supermarkets to validate the proper
functioning of SeCoMan. Furthermore, the deployment of this
application was also performed for measuring the throughput
and scalability of SeCoMan. These results are subsequently
presented in Section VII.

The eCoMarket application provides customers (Users) with
the products’ location and their information, the position of
shopping carts and information about their products, products
on offer, nearby friends with several levels of granularity, the
path to reach people or products, the customers’ authorization
to stay at a given place, and privileges and roles of customers.
Customers of the supermarket will be able to obtain previous
information using an Android application that interacts with
the eCoMarket application using the REST technology. With
REST, users can use devices with limited computing resources
to make their requests as such devices will only have to handle
queries, receive responses, and then display them. On the
other hand, remote method invocation is used to separate the
Application and Context Management layers, thus balancing
the workload across multiple computers in order to avoid
bottlenecks, among others.

Semantic rules that form policies are expressed in Semantic
Web Rule Language (SWRL) [16]. SWRL includes a type of
axiom, called Horn clause logic, of the form if . . . then . . .,
and it is the most used in Semantic Web. The space and
context information is shaped in the Location and Supermarket

1120 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

Fig. 4. Reasoning and query processes.

ontologies, respectively. Both of them are defined in Web
Ontology Language (OWL 2) [17] and have been generated with
the Protégé tool [18]. We have chosen OWL 2 rather than other
languages, such as Resource Description Framework (RDF),
RDF Schema, or DARPA Agent Markup Language+Ontology
Interchange Language (DAML+OIL), because OWL 2 is more
expressive than the rest. It was specifically designed as an
ontology language, it is an open standard, and it is the main
ontology language used nowadays in Semantic Web.

In order to infer new knowledge, all processes related to
the Reasoner module of SeCoMan (shown in Fig. 1) are de-
picted in Fig. 4. The Reasoner component uses Pellet [19],
which receives ontological models generated by the Interpreter
component and returns inferred models with new knowledge.
The Interpreter uses the Jena API [20] to generate ontological
models with the information shaped in the ontologies and poli-
cies. Finally, the Engine component is in charge of translating
the queries performed by the users into SPARQL queries [21],
which are applied to the inferred model to get the result.

The Interpreter generates an ontological model from the
Location and Context-aware ontologies (step 1a in Fig. 4). This
model is sent to the Reasoner to obtain the inferred model
with new information inferred from the ontologies (step 2a).
Once the Interpreter receives the inferred model, it updates it
with the new information provided by the Reasoner accord-
ing to the policies defined in the system (steps 3a and 4a).
Note that the previous process is made when new information
from the environment is provided. Therefore, when queries are
performed, SeCoMan always has available a consistent and
updated inferred model, thus avoiding users having to wait
the reasoning time shown later in Section VII-A. When users
make a query (step 1b), the Interpreter invokes the Engine
with the latest inferred model and the query (step 2b). The
Engine component applies the appropriate SPARQL queries to
the inferred model and returns the result (step 3b).

We developed two plug-ins in SeCoMan to obtain the space
and context information. The first one obtains the space infor-
mation through a REST client, which communicates with an
indoor location system based on Wi-Fi. This location-based
system obtains the environment map and the location of its
elements, combining the fingerprinting technique with pictures
about the environment [22]. The second plug-in obtains the
context information through a REST client, which communi-
cates with a radio-frequency identification (RFID) middleware
[23]. This middleware is capable of getting the information
of the products contained on the shopping carts. The space

TABLE I
INDIVIDUAL DISTRIBUTION OF POPULATION

and context-aware information are provided to the Context
Management layer by using REST.

VII. EXPERIMENTAL RESULTS

We conducted some experiments with the aim of measuring
the throughput and scalability of our SeCoMan proposal. These
experiments were intended to deal with three questions.

1) Is the computing time of reasoning acceptable?
2) How does it scales with different amount of information,

such as the number of individuals and policies?
3) How does the query time varies when taking into consid-

eration the previous premises?
As experimental setting, the SeCoMan framework and the

conducted tests were carried out in a dedicated PC with an Intel
Core i7-3770 3.40-GHz, 16-GB of RAM, and an Ubuntu 12.04
LTS as its operating system. The results shown in this section
have been obtained by executing the experiments 100 times and
computing their arithmetic mean.

A. Reasoner Performance

The Reasoner is an important part of SeCoMan as it greatly
affects to the framework performance. In order to check the
reasoning time and its scalability, several experiments were
conducted. A way to measure the SeCoMan performance is
making executions with different complexity. This complexity
is related to the number of statements hold in the knowledge
base, which depends on the number of individuals present in
the ontology and the number of semantic rules that form the
policies. Increasing the number of individuals and semantic
rules will provoke an increment on the number of statements
and thus on the complexity of the executions.

The number of individuals contained in our ontologies is
referred as population. This was randomly generated for the
experiments, but in a controlled way, in order to achieve the
desired distribution for simulating a scenario as real as possible.
Table I depicts the number of elements used in our environment
and the percentages obtained for them.

Another issue to evaluate the Reasoner scalability is the way
in which the population sizes are established. In this sense,
we defined an initial population of 15 000 individuals, and
we increased this population with other 15 000 individuals in
each step. In order to show the complexity of our ontology,
Table II shows the relationships between the individuals and
the statements generated by the Reasoner. As observed, the
number of statements (obtained after the reasoning process) is
proportionally increased according to the number of individu-
als. Each population group will be used to later obtain the time

HUERTAS CELDRÁN et al.: SeCoMan: A SEMANTIC-AWARE POLICY FRAMEWORK FOR DEVELOPING SMART APPLICATIONS 1121

TABLE II
NUMBER OF INDIVIDUALS AND STATEMENTS PER POPULATION

Fig. 5. Consistency checking time.

Fig. 6. Reasoning time for different populations and policies.

that SeCoMan needs to check the knowledge base consistency
and infer new information.

Fig. 5 depicts the time, measured in milliseconds, used by
the Reasoner to validate the ontology considering different
population groups (see Table II).

Comparing the increase in individuals and statements with
the reasoning time, we can observe that SeCoMan can support
a very large number of individuals or statements within a
reasonable reasoning time. Furthermore, the linearity property
behind these results allows us to deduce that a better computer
system setting would obtain a lower reasoning time.

The previous experiment has demonstrated a linear relation-
ship between individual/statements and the reasoning time, but
without considering policies. Thus, the main goal behind the
next test is to check how policies can affect the reasoning time.
In this sense, we defined several percentages of policies related
with the persons contained in our population groups.

Fig. 6 depicts how the reasoning time varies depending
on each population group (see Table II) and the percentages
associated to the policies.

Policies have a very low impact in the reasoning time of our
framework. For all populations, the difference between having
a 25% and a 200% of policies is around a few milliseconds.

As main conclusion of this section, we have demonstrated
with the previous experiments that when the number of individ-
uals/statements is linearly increased in our ontology, the rea-
soning time also increases linearly. Furthermore, the semantic

rules that form the policies do not have an important impact on
the reasoning time.

B. Queries Performance

We want now to check how the query time varies when
considering different sizes in the population and the number of
policies. In this sense, we defined an experiment per each query
defined in Section V: authorization, location, range, navigation,
and closeness. These experiments consist on checking how the
amount of individuals and the percentage of policies affect to
the query response time.

Fig. 7 shows the results for each query. The x-axis cor-
responds to a given population group, the y-axis is the time
in milliseconds, and each line symbolizes a given percentage
of policies. Note that the closeness query time is not shown
because this kind of query is composed of location and range
queries (the response time would be the sum of both).

In order to obtain the query times for each query, we used
the unauthorizedPersons function (defined in Section V-B)
to check the authorization query time, whose results are
shown in Fig. 7(a); the elementLocation function (defined in
Section V-C) to check the location query time, whose results are
shown in Fig. 7(b); the rangeSpaceElements function (defined
in Section V-D) to check the range query time, whose results
are shown in Fig. 7(c); and getMinimumPaths and pathFinder
functions (defined in Section V-F) to check the navigation query
time, whose results are shown in Fig. 7(d). pathFinder was
implemented using the breadth-first search (BFS) algorithm.
BFS is a graph search algorithm that begins with the source
position and explores all the adjacent positions, examining each
of the unvisited ones until finding the destination.

As shown in Fig. 7, the response time for all queries is
mainly influenced by the population, as when we increased the
population, the response time also increased. This is because
there are more statements in the knowledge base; therefore, the
complexity to answer the query is higher. Furthermore, we can
observe that policies do not have a great impact in the response
time as policies generate statements associated to persons, and
as shown in Section VII-A, they are the 8.2% of the individuals
contained in each population.

Fig. 7(b) shows that the location query time is much lower
than for the rest, due to its complexity being lower. As shown
in Fig. 7(d), the response time for the navigation query is much
higher than for the rest of queries. We consider that its times
are not an affordable time for answering a query. As we have
demonstrated with the previous queries, this problem is not
how to represent the information, but the complexity of the
algorithm. Thus, improving the pathFinder function in order to
decrease the time response is defined as future work.

As main conclusion of this section, we have demonstrated
that for different kinds of queries the policies do not have a

1122 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

Fig. 7. Query time variation when considering different populations and policies. (a) Authorization. (b) Location. (c) Range. (d) Navigation.

significant impact in the framework performance. As it can be
observed in Fig. 7, the kind of algorithm and the amount of
individuals/statements are the reason for the increased time in
queries and reasoning processes.

VIII. DISCUSSION

As stated in Section II, not all context-aware systems manage
policies, and those that manage policies are for different pur-
poses, such as to protect the users’ privacy. Here, we compare
SeCoMan with those works presented in Section II that allow
users to manage their privacy, showing in detail the policies
provided by each one.

CoBrA allows users to protect their privacy through policies,
indicating the personal information that they want to reveal.
In SeCoMan, personal information is a topic that is beyond
the scope of the Location ontology. SeCoMan preserves the
privacy of the users by shaping their personal information
in a context ontology whose information is managed using
operational policies. On the other hand, the policies defined in
CoBrA take into account the users’ location and the context
in which they are located, whereas SeCoMan allows actors to
define richer policies than CoBrA. In our framework, users can
share their location to the right users, at the right granularity,
at the right place, and at the right time. Instead, the users of
CoBrA cannot define policies to manage their location privacy,
which is considered an important requirement in context-aware
systems. SeCoMan provides four kinds of policies to allow
users to manage their location privacy (see Section IV-C).

CoPS solves the inability of CoBrA to manage the users’
location privacy, although the former does not consider the per-
sonal information privacy. Using policies, CoPS allows users
to decide to whom and at which precision they want to share
their location and context information. The policies defined in
CoPS are composed of several fields: subject, context, time,
precision, application, and result. The structure of these policies
has certain similarities with the SeCoMan policies. However,
comparing field by field, we can select in SeCoMan a given
subject, or a group of subjects, depending on their roles or
privileges; context and time information are included in our
policies explicitly; precision corresponds in our policies to a
place, or a list of places, with different granularity; and the
application and result are shaped in our policies to establish an
internal classification to generate new knowledge. Therefore,
SeCoMan covers users’ location privacy of CoPS through the

TABLE III
COMPARATIVE OF SYSTEMS IN MANAGING POLICIES TO PRESERVE

USERS’ PRIVACY

hiding and granularity policies. Furthermore, our framework
allows users to generate fictitious positions for specific users
and manage the level of closeness at which they want to be
located by other users.

Finally, PPCS addresses the weaknesses of CoBrA and
CoPS. Specifically, PPCS protects users’ information and their
location by allowing users to decide the granularity at which
they want to share their information, to whom, and under what
conditions. The time during which they want to reveal the infor-
mation, or the place(s) where they want to share information,
is also taken into account when users define their policies.
However, and in addition to the cloaking, hiding, granularity,
and closeness policies, SeCoMan grants or denies access to
users to stay in certain locations depending on their privileges.
In addition to that, SeCoMan also manages the context-aware
information through operational policies.

Table III shows a comparison of the policies supported by the
systems analyzed earlier. The rest of the proposals that were
shown in Section II but were not included in Table III do not
manage policies to protect users’ privacy. Even solutions such
as Feel@Home, Hydra, and CroCo define a module indicating
that the users’ privacy is protected but do not define how to
develop it.

Regarding the SeCoMan performance, as we have demon-
strated in Section VII, policies do not have a significant impact
in reasoning and query times, allowing users to define as many
policies as they want without degrading the performance. When
we linearly increased the number of individuals/statements in
our ontology, the reasoning time also increased linearly. These
requirements should be supported by the works commented
earlier. In this sense, CoBrA does not present experiments to
know how these aspects affect to the system performance and
scalability; CoPS demonstrates that semantic rules do not have
a direct impact in the time of answering questions, as well as

HUERTAS CELDRÁN et al.: SeCoMan: A SEMANTIC-AWARE POLICY FRAMEWORK FOR DEVELOPING SMART APPLICATIONS 1123

showing that the query time increases linearly when the system
receives simultaneous queries; and PPCS demonstrates that
the reasoning time is linearly increased when users increases
linearly.

Furthermore, and setting CoBrA aside for not providing
performance measures, the authors of CoPS and PPCS argued
that query times increase linearly as the number of users also
grow (similar conclusions to ours). Yet, none of them offers
users further security aspects in comparison with SeCoMan, as
shown in Table III and thoroughly discussed in this section.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have shown that, to the best of our knowl-
edge, there is no framework that accomplishes all the essential
requirements to develop context-aware smart applications using
a semantic-oriented IoT vision. To this end, we presented a
context-aware framework called SeCoMan that allows devel-
oping smart applications where users can share their location to
the right users, at the right granularity, at the right place, and
at the right time. Queries based on location, context awareness,
and authorization are predefined in the framework to provide
smart applications with the space and context information.
Ontologies are the key for modeling the context, inferring
new knowledge through semantic reasoners, and sharing this
knowledge with independent systems. Moreover, the frame-
work functions are defined in a manner that accommodate IoT
requirements, and they neither affect system performance nor
introduce excessive overheads.

As next steps of this research, we plan to integrate SeCoMan
in the world of cloud computing [24]. Our idea is to offer
the Context Management layer of SeCoMan as middleware,
located at the Platform as a Service (PaaS) layer of the cloud
architecture. This layer will provide the information needed by
different context-aware applications located in the Software as
a Service (SaaS) layer. Furthermore, we will benefit from other
advantages of cloud computing, such as elasticity, monitoring,
auditing, load balancing, and security issues. We also plan
to improve users’ privacy by adding anonymity and hashing
policies to hide and disguise the identity of a user [25].

Finally, the support and implementation of outdoor based-
location services is another research topic for future work,
where global positioning systems, such as GPS or Galileo, can
be used to get the position of people and objects in order to offer
services based on outside locations.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] N. Guarino, D. Oberle, and S. Staab, “What is an ontology?” in Handbook
on Ontologies. Berlin, Germany: Springer-Verlag, 2009, ser International
Handbooks on Information Systems, pp. 1–17.

[3] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the Internet of things: A survey,” IEEE Commun.
Surveys Tuts. [Online]. Available: http://dx.doi.org/10.1109/SURV.2013.
042313.00197

[4] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan,
“Smart semantic middleware for the internet of things,” in Proc. 5th Int.
Conf. Inf. Control, Autom. Robot., May 2008, pp. 169–178.

[5] B. Guo, L. Sun, and D. Zhang, “The architecture design of a cross-domain
context management system,” in Proc. 8th IEEE Int. Conf. Pervasive
Comput. Commun. Workshops, Apr. 2010, pp. 499–504.

[6] A. Badii, M. Crouch, and C. Lallah, “A context-awareness framework for
intelligent networked embedded systems,” in Proc. 3rd Int. Conf. Adv.
Hum.-Oriented Pers. Mech., Technol. Services, Aug. 2010, pp. 105–110.

[7] S. Pietschmann, A. Mitschick, R. Winkler, and K. Meissner, “CroCo:
Ontology-based, cross-application context management,” in Proc. 3rd Int.
Workshop Semantic Media Adapt. Pers., Dec. 2008, pp. 88–93.

[8] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, “An ontology-based
context model in intelligent environments,” in Proc. Commun. Netw.
Distrib. Syst. Model. Simul. Conf., Jan. 2004, pp. 270–275.

[9] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive
computing environments,” Knowl. Eng. Rev., vol. 18, no. 3, pp. 197–207,
Sep. 2003.

[10] D. Ejigu, M. Scuturici, and L. Brunie, “CoCA: A collaborative context-
aware service platform for pervasive computing,” in Proc. 4th Int. Conf.
Inf. Technol., Apr. 2007, pp. 297–302.

[11] P. Jagtap, A. Joshi, T. Finin, and L. Zavala, “Preserving privacy in
context-aware systems,” in Proc. 5th IEEE Int. Conf. Semantic Comput.,
Sep. 2011, pp. 149–153.

[12] V. Sacramento, M. Endler, and F. N. Nascimento, “A privacy service for
context-aware mobile computing,” in Proc. 1st Int. Conf. Security Privacy
Emerging Areas Commun. Netw., Sept. 2005, pp. 182–193.

[13] University of Murcia, Murcia, Spain, Complete definition of the SeCo-
Man ontologies. [Online]. Available: http://reclamo.inf.um.es/secoman

[14] J. M. Marín Pérez, J. Bernal Bernabé, J. M. Alcaraz Calero,
F. J. Garcia Clemente, G. Martínez Pérez, and A. F. Gómez Skarmeta,
“Semantic-based authorization architecture for grid,” Future Gen. Com-
put. Syst., vol. 27, no. 1, pp. 40–55, Jan. 2011.

[15] C. Becker and F. Dürr, “On location models for ubiquitous computing,”
Pers. Ubiquit. Comput., vol. 9, no. 1, pp. 20–31, Jan. 2005.

[16] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, SWRL: A semantic web rule language combining OWL and
RuleML, May 2004, W3C Member Submission.

[17] B. Motik, P. F. Patel-Schneider, and B. Parsia, OWL 2 web ontology
language: Structural specification and functional-style syntax, Dec. 2012,
W3C Recommendation.

[18] Stanford Center for Biomedical Informatics Research, Stanford, CA,
USA, Protégé: A free, open source ontology editor and knowledge-base
framework. [Online]. Available: http://protege.stanford.edu

[19] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semantics, Sci., Services Agents World
Wide Web, vol. 5, no. 2, pp. 51–53, Jun. 2007.

[20] The Apache Software Foundation, Forest Hill, MA, USA, The
Apache Jena2 ontology API. [Online]. Available: http://jena.apache.org/
documentation/ontology

[21] E. Prud’hommeaux and A. Seaborne, SPARQL query language for RDF,
Jan. 2008, W3C Recommendation.

[22] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge,
G. Borriello, and B. Schilit, “Place lab: Device positioning using ra-
dio beacons in the wild,” in Proc. 3rd Int. Conf. Pervasive Comput.,
May 2005, pp. 116–133.

[23] Trascends, Glastonbury, CT, USA, Rifidi - Connect the Internet of Things.
[Online]. Available: http://sourceforge.net/projects/rifidi

[24] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[25] E. Paintsil, “Evaluation of privacy and security risks analysis construct for
identity management systems,” IEEE Syst. J., vol. 7, no. 2, pp. 189–198,
Jun. 2013.

Alberto Huertas Celdrán received the M.Sc. degree
in computer science from the University of Murcia,
Murcia, Spain.

He is currently a Research Associate with the De-
partment of Information and Communication Engi-
neering, University of Murcia. His scientific interests
include security, semantic technology, and policy-
based context-aware systems.

http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://reclamo.inf.um.es/secoman
http://protege.stanford.edu
http://jena.apache.org/documentation/ontology
http://jena.apache.org/documentation/ontology
http://sourceforge.net/projects/rifidi

1124 IEEE SYSTEMS JOURNAL, VOL. 10, NO. 3, SEPTEMBER 2016

Félix J. García Clemente received the M.Sc. and
Ph.D. degrees in computer science from the Univer-
sity of Murcia, Murcia, Spain.

He is currently an Associate Professor of computer
networks with the Department of Computer Engi-
neering, University of Murcia. His research interests
include security and management of distributed com-
munication networks.

Manuel Gil Pérez received the M.Sc. degree in
computer science from the University of Murcia,
Murcia, Spain.

He is currently a Research Associate with the De-
partment of Information and Communication Engi-
neering, University of Murcia. His scientific activity
is mainly devoted to security infrastructures, trust
management, and intrusion detection systems.

Gregorio Martínez Pérez (M’80) received M.Sc.
and Ph.D. degrees in computer science from the
University of Murcia, Murcia, Spain.

He is currently an Associate Professor with the
Department of Information and Communication En-
gineering, University of Murcia. His research inter-
ests include security and management of distributed
communication networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

